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contact discontinuities. In order to reduce these difficulties,
many methods have been attempted, such as modifyingThis paper concerns the extension of the gas-kinetic BGK-type

scheme to multicomponent flow calculations. In this new scheme, the flux function [13], introducing nonconservative vari-
each component satisfies its individual gas-kinetic BGK equation ables [11], or designing the specific numerical discretization
and the equilibrium states for each component are coupled in space to update Y for certain flow solvers [1]. Currently, hybrid
and time to have common temperature and velocity. The particle

schemes have become popular for multicomponent flowdiffusion in gas mixtures is included naturally in the gas-kinetic
calculations [12]. Based on gas-kinetic theory, many latticemodel. The current scheme can handle strong shocks and be oscilla-

tion-free through the material interface. The scheme guarantees gas methods have also been developed for the studying of
the exact mass conservation for each component and the exact multicomponent gas flow [21, 6], specifically for incom-
conservation of total momentum and energy in the whole particle pressible immiscible flow and phase transition problems
system. As a special application, the current scheme is applied to

[20].gas vacuum interaction case, where the mass densities for other
The gas-kinetic scheme for compressible Euler equa-components are set to zero in the whole domain. The extension of

the current approach to three dimensions is straightforward. With tions has been introduced by Sanders and Prendergast [19],
the definition of w 5 r(1) 2 r(2) in the two-component gas flow, similar Reitz [18], Pullin [17], Deshpande [4], and Perthame [15].
to the level set method we can follow explicitly the time evolution All the above schemes developed so far are based on the
of the material interface (w 5 0). The numerical results confirm the

collisionless Boltzmann equation, yielding results whichaccuracy and robustness of the BGK-type scheme. Q 1997 Academic

are more diffusive than those obtained from classical highPress

resolution difference schemes. The physical reason and
remedy for this is analyzed in a recent work [22].

1. INTRODUCTION In this paper, we are interested in extending the well-
developed gas-kinetic BGK scheme to solve the multicom-

The focus of this paper is to solve the Euler equations ponent compressible Euler equations. Each component
for two-component gas flow, has its individual gas-kinetic BGK equation; the equilib-

rium states for each component are coupled through the
physical requirements of total momentum and energy con-
servation in particle collisions. In each time step, the time-
dependent gas distribution functions for each component1
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are obtained simultaneously. The current scheme is a natu-
ral extension of the BGK-type schemes for one-component
gas [16, 23–25]. There are no specific numerical require-
ments imposed on the material interface in the current
scheme in order to get a smooth transition between differ-where r 5 r(1) 1 r(2) is the total density, E is the total

energy, and U is the average flow velocity. Each component ent components. Basically, each component is regarded as
filling up the whole space and the multicomponent gashas its specific heat Cvi and ci . The equation of state is

«i 5 riCviT and P is the total pressure. A detailed introduc- interactions are formulated in each cell, although the mass
density for certain components could probably be zero.tion about multicomponent flow equations can be found in

[11]. A straightforward extension of finite volume upwind Particle transport in gas mixtures is the basic physical be-
haviour to be described by the gas kinetic theory and theschemes based on the Riemann solver to the multicompo-

nent flow calculations usually encounters two difficulties: current approach is an initial attempt to capture these
phenomena. The outline of this paper is as follows. Inthe mass fraction Y and 1 2 Y may become negative or

the pressure distribution may present oscillations through Section 2, we introduce the BGK models for two-compo-
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nent gas flow and present the basic numerical discreti- cases, a modified BGK model is necessary [7] and the
current scheme can be also extended there.zations. Section 3 includes standard test cases. The last

section is the conclusion. Instead of individual mass, momentum, and energy con-
servation in a single component flow, for two-component
gas mixtures the compatibility condition is2. ONE-DIMENSIONAL MULTICOMPONENT

BGK SCHEME

E [(g(1) 2 f (1))f(1)
a 1 (g(2) 2 f (2))f(2)

a ] du dj 5 0,
(3)The fundamental task in the construction of a finite-

volume gas-kinetic scheme for multicomponent flow simu- a 5 1, 2, 3, 4,
lations is to evaluate the time-dependent gas distribution
function f for each component at a cell interface, from where
which the numerical fluxes are evaluated. For two-compo-
nent gas flow, there are two macroscopic quantities in space f(1)

a 5 (1, 0, u, As(u2 1 j2))T

x and time t, which are mass (r(1)(x, t), r(2)(x, t)), momentum
(r(1)U(1)(x, t), r(2)U(2)(x, t)), and energy (E(1)(x, t), E(2)(x, and
t)) densities, where (1) and (2) refer to the component 1
and component 2 gases, respectively. Generally, these two

f(2)
a 5 (0, 1, u, As(u2 1 j2))T

components have different specific heat ratio (c(1), c(2)).
The governing equation for the time evolution of each

are the moments for individual mass, total momentum,component is the BGK model [3],
and total energy densities.

Based on Eq. (2) and Eq. (3), from Chapman–Enskog
f (1)

t 1 uf (1)
x 5 (g(1) 2 f (1))/t,

(2) expansion the diffusion equations between the two compo-
nents can be derived, for example,f (2)

t 1 uf (2)
x 5 (g(2) 2 f (2))/t,

where f (1) and f (2) are gas distribution functions for compo- ­r(1)

­t
1

­(r(1)U)
­xnents 1 and 2, and g (1) and g (2) are the corresponding

equilibrium states which f (1) and f (2) approach. For each
5 t

­

­x S r(2)

r(1) 1 r(2)

­

­x Sr(1)

2l
D2

r(1)

r(1) 1 r(2)

­

­x Sr(2)

2l
DDcomponent, the equilibrium state is a Maxwellian distribu-

tion with the general formulation,

and
g 5 r(l/f)(K11)/2 e2l((u2U)2

1j2),

­r(2)

­t
1

­(r(2)U)
­xwhere l is the inverse of temperature. K (1) and K (2) are the

degree of internal variable j in the distribution functions,
which are related to the specific heat ratio c(1) and c(2). 5 t

­
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r(1) 1 r(2)

­
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2l
D2
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­
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2l
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Under the assumption of equipartition in the particle sys-
(4)tem, the relations between K and c for 1D perfect gas are

Here U and l are the common velocity and temperatureK(1) 5 (5 23c(1))/(c(1) 2 1) 1 2,
in the equilibrium states g(1) and g(2). If the collision time

K(2) 5 (5 23c(2))/(c(2) 2 1) 1 2. for f (1) and f (2) in Eq. (2) are different, a similar diffusion
equation can be derived [3]. Here one point that needs to
be emphasized is that the BGK models for multicomponentDue to the momentum and energy exchange in particle

collisions between two components, g(1) and g(2) in Eq. (2) flow take into account the effects of particle diffusion be-
tween different species, and the numerical scheme pre-are not independent functions. As a physical model, it is

postulated that g(1) and g(2) have the same temperature sented in this section is actually a flow solver to describe
these phenomena. So, from the physical point of view, theand velocity. This assumption of no velocity slip is reason-

able only if the density variation between the components current scheme is different from those schemes based on
the inviscid Euler equations [12, 1] in which the terms onis moderate, as is generally the case with two gases. In

some situations, the nonequilibrium particle transport in the right-hand sides of Eq. (4) are assumed to be zero. A
multicomponent flow solver for the compressible Eulergas mixtures are important, especially when the molecular

weights for each component are very different. In these equations (1) corresponds to t R 0 in the gas-kinetic de-
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scription. However, due to the limited numerical cell size
and time step we can never make t extremely small. For
example, in a smooth flow region t is usually set to the
order of 1023 DT, where DT is the numerical time step.
So, the particle diffusion is unavoidable.

Due to the momentum and energy exchange in particle
collisions, the maximum entropy criteria in the particle
system require that the equilibrium states g(1) and g(2) have
the common velocity and temperature at any points in FIG. 1. The linear distributed macroscopic variables ­W (1,2)/­r in

r 5 (x, t).space and time. So for any given initial macroscopic vari-
ables in space and time,

If both W (1) and W (2) in Eq. (5) are physically realizable
states which satisfyW (1) 5 (r(1), r(1)U (1), E (1))T,

(5)
W (2) 5 (r(2), r(2)U (2), E (2))T, (r(1) $ 0, E (1) $ Asr(1)U (1)2

)

and
we can construct the corresponding equilibrium states,

(r(2) $ 0, E (2) $ Asr(2)U (2)2
),

then the value of l0 in Eq. (9) is a positive number. As ag(1) 5 r(1)(l0/f)(K(1)
11)/2e2l0((u2U0)2

1j2)

consequence, the equilibrium states are also physical states
with positive temperature and pressure. From thermody-

and namics, we know that the total entropy in the particle
system with the equilibrium states g(1) and g(2) has the
largest value for all possible particle distribution functions

g(2) 5 r(2)(l0/f)(K(2)
11)/2e2l0((u2U0)2

1j2), (6) corresponding to the initial macroscopic states W (1) and
W (2) in Eq. (5) where the momentum and energy are ex-
changeable between different components.where the common l0 and U0 can be obtained from the

Because of particle collisions, each component relaxesconservation requirements,
to a local equilibrium state in a time scale of collision time
t. Since the CFL time step used in the current scheme

r(1)U (1) 1 r(2)U (2) 5 (r(1) 1 r(2))U0 is much larger than the collision time, the exchange of
momentum and energy in particle collisions can be finished
instantaneously and equalize the temperature and velocityand
of both components. Therefore, in the numerical point of
view at any point in space and time, it is fair enough to
modify the individual macroscopic distributions in Eq. (5)E (1) 1 E (2) 5

r(1) 1 r(2)

2
U 2

0

(7)
to the equilibrium values

W (1) 5 (r(1), r(1)U (1), E (1))T
1

(K (1) 1 1)r(1) 1 (K (2) 1 1)r(2)

4l0
.

5 Sr(1), r(1)U0 ,
1
2

r(1) SU 2
0 1

K (1) 1 1
2l0

DDT

From the above two equations, U0 and l0 can be ob-
andtained explicitly,

W (2) 5 (r(2), r(2)U (2), E (2))T

(10)U0 5
r(1)U (1) 1 r(2)U (2)

r(1) 1 r(2) (8)
5 Sr(2), r(2)U0 ,

1
2

r(2) SU 2
0 1

K (2) 1 1
2l0

DDT

.

The equilibrium states g(1) and g(2) are coupled with theand
common temperature and velocity at any point in space
and time, r 5 (x, t); their slopes in r should also be related
to each other. As shown in Fig. 1, once we know W (1),l0 5

1
4

(K (1) 1 1)r(1) 1 (K (2) 1 1)r(2)

E (1) 1 E (2) 2 As(r(1) 1 r(2))U 2
0

. (9)
W (2), and their linear slopes for the macroscopic variables,
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The solutions of Eq. (12) are
W (1) 1

­W (1)

­r
r 5 W (1) 1 S­r(1)

­r
,
­r(1)U (1)

­r
,
­E (1)

­r DT

r

p 5
2l2

0(P2 2 2U0P1)
(K (1) 1 1)r(1) 1 (K (2) 1 1)r(2)

and

n 5
2l0

r(1) 1 r(2) SP1 2
(r(1) 1 r(2))U0

l0
pD

W (2) 1
­W (2)

­r
r 5 W (2) 1 S­r(2)

­r
,
­r(2)U (2)

­r
,
­E (2)

­r DT

r,

m(1) 5
1

r(1) Sg1 2 r(1)U0n 2 r(1) SU 2
0 1

K (1) 1 1
2l0

D pD
we can construct the equivalent gas distribution functions
g(1) and g(2), and their slopes (m(1), n(1), r(1)) and (m(2), n(2),

m(2) 5
1

r(2) Sg2 2 r(2)U0n 2 r(2) SU 2
0 1

K (2) 1 1
2l0

D pD .r(2)) in the equivalent expansion of Maxwellian distribution
functions at the same point,

The above solutions will be used several times in the cur-
[1 1 (m(1) 1 n(1)u 1 p(1)(u2 1 j2))r] g(1),

(11) rent two-component BGK solver to obtain both spatial and
temporal variations of the particle distribution functions.[1 1 (m(2) 1 n(2)u 1 p(2)(u2 1 j2))r] g(2).

In the numerical scheme, the space is divided into cells.
For each cell j, the cell center is located at xj and the cell

Due to the relations between g(1) and g(2) in Eq. (6), the interfaces are xj21/2 and xj11/2 . The cell-averaged macro-
values of (m(1,2), n(1,2), p(1,2)) in Eq. (11) are not totally scopic variables are denoted as W (1)

j and W (2)
j , for the mass,

independent variables. Since n(1), p(1), n(2), p(2) depend only momentum, and energy. In order to update the cell-aver-
on the rth-derivative of U0 and l0 , the common velocity aged values W (1,2)

j , we need to get the numerical fluxes
and temperature locally in space and time require across the cell interface. These fluxes are determined from

the time-dependent gas distribution functions. The gas dis-
n ; n(1) 5 n(2), p ; p(1) 5 p(2). tribution function for each component at a cell interface

can be obtained from the integral solution of the BGK
model,So, the connections between macroscopic and microscopic

distributions can be reduced to

f (1)(xj11/2 , t, u, j) 5
1
t
Et

0
g(1)(x9, t9, u, j)e2(t2t9)/t dt9

(13)
1 e2t/t f (1)

0 (xj11/2 2 ut)

for component 1, and1
­r(1)

­r

­r(2)

­r

­(r(1)U (1) 1 r(2)U (2))
­r

­(E (1) 1 E (2))
­r

2;1
g1

g2

g3

g4

2 (12)
f (2)(xj11/2 , t, u, j) 5

1
t
Et

0
g(2)(x9, t9, u, j)e2(t2t9)/t dt9

(14)
1 e2t/t f (2)

0 (xj11/2 2 ut)

for component 2, where xj11/2 is the cell interface and
x9 5 xj11/2 2 u(t 2 t9) the particle trajectory. There are5 E [(m(1) 1 nu 1 p(u2 1 j2))g(1)f(1)

a

four unknowns in Eq. (13) and Eq. (14). Two of them are
1 (m(2) 1 nu 1 p(u2 1 j2))g(2)f(2)

a ] du dj. initial gas distribution functions f (1)
0 and f (2)

0 at the begin-
ning of each time step t 5 0, and the others are g(1) and
g(2) in both space and time locally around (xj11/2 , t 5 0).The above four equations uniquely determine the four
In order to obtain all these unknowns, the BGK schemeunknowns (m(1), m(2), n, p) and the solutions can be ob-
is summarized as follows.tained in the following: Define

(1) Modify the initial cell average conservative vari-
ables W (1,2)

j in each cell j to the equilibrium values ac-P1 5 g3 2 U0(g1 1 g2)
cording to Eq. (10) where the equilibrium velocity and
temperature in each cell are obtained using Eq. (8) and Eq.P2 5 2g4 2 SU 2

0 1
K (1) 1 1

2l0
D g1 2 SU 2

0 1
K (2) 1 1

2l0
D g2 .

(9). Then, apply TVD, ENO, or LED [8–10] techniques to
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interpolate the equilibrium conservative variables W (1,2)
j in for component 2. And g(1)

l , g(2)
l can be obtained from the

macroscopic densities W̃ (1,2)
j (xj11/2) in Eq. (16), which areeach cell j to get the reconstructed initial data

g(1)
l 5 r(1)

l (ll
0/f)(K(1)

11)/2e2ll
0((u2Ul

0)2
1j2)

W (1,2)
j (x) 5 W (1,2)

j

and1
W (1,2)

j (xj11/2) 2 W (1,2)
j (xj21/2)

xj11/2 2 xj21/2
(x 2 xj ) (15)

g(2)
l 5 r(2)

l (ll
0/f)(K(2)

11)/2e2ll
0((u2Ul

0)2
1j2). (21)for x«[xj21/2 , xj11/2].

Similarly, g(1)
r and g(2)

r can be found from W̃ (1,2)
j11 (xj11/2) in

In order to get the left and right states (W (1,2)
j (xj21/2), Eq. (16),

W (1,2)
j (xj11/2)), nonlinear limiters should be used.
(2) Based on states (W (1,2)

j (xj11/2), W (1,2)
j11 (xj11/2)), use Eq.

g(1)
r 5 r(1)

r (lr
0/f)(K(1)

11)/2e2lr
0((u2Ur

0)2
1j2)

(8) and Eq. (9) on both sides of the cell interface xj11/2 to
evaluate the equilibrium velocities U l

0 , U r
0 and tempera-

andtures ll
0 , lr

0 , and modify these reconstructed data to the
new values according to Eq. (10), which are denoted as

g(2)
r 5 r(2)

r (lr
0/f)(K(2)

11)/2e2lr
0((u2Ur

0)2
1j2). (22)

W̃ (1,2)
j (xj11/2), W̃ (1,2)

j11 (xj11/2). (16)
The terms a(1,2)

l,r in Eq. (19) and Eq. (20) are composed of

Then, connect the above values in Eq. (16) to the cell- a(1,2)
l,r 5 m(1,2)

l,r 1 nl,ru 1 pl,r(u2 1 j2),
centered values in Eq. (15),

which can be determined on both sides of a cell interface
in terms of the slopes of macroscopic variables in Eq. (18)W (1,2)

j (xj), W (1,2)
j11 (xj11), (17)

by using the techniques for solving Eq. (12) with r 5 x.
At this point, all the parameters in Eq. (19) and Eq. (20)

to get the linear slopes of mass, momentum, and energy for the initial gas distribution functions at the beginning
densities for each component on both sides of a cell in- of each time step are determined from the initial recon-
terface, structed macroscopic distributions.

(3) Assume the equilibrium states in Eq. (13) and Eq.
(14) around (xj11/2 , t 5 0) as

W̃ (1,2)
j (xj11/2) 2 W (1,2)

j (xj )
xj11/2 2 xj

,
W (1,2)

j11 (xj11) 2 W̃ (1,2)
j11 (xj11/2)

xj11 2 xj11/2
.

g(1) 5 (1 1 (1 2 H[x 2 xj11/2])(x 2 xj11/2)a(1)
l

(23)(18)
1 H[x 2 xj11/2](x 2 xj11/2)a(1)

r 1 A(1)t)g(1)
0

In order to translate the above macroscopic flow distribu- and
tions into the equivalent microscopic gas distribution func-
tions, we construct the initial distribution functions f (1)

0 g(2) 5 (1 1 (1 2 H[x 2 xj11/2])(x 2 xj11/2)a(2)
l

(24)and f (2)
0 in Eq. (13) and Eq. (14) as

1 H[x 2 xj11/2](x 2 xj11/2)a(2)
r 1 A(2)t)g(2)

0 ,

where H is the heaviside function. And g(1)
0 and g(2)

0 are
f (1)

0 5H(1 1 a(1)
l (x 2 xj11/2))g(1)

l , x # xj11/2 ,

(1 1 a(1)
r (x 2 xj11/2))g(1)

r , x $ xj11/2 ,
(19) the initial equilibrium states located exactly at the cell in-

terface,

g(1)
0 5 r(1)

0 (l0/f)(K(1)
11)/2e2l0((u2U0)2

1j 2)for component 1, and

and

f (2)
0 5H(1 1 a(2)

l (x 2 xj11/2))g(2)
l , x # xj11/2 ,

(1 1 a(2)
r (x 2 xj11/2))g(2)

r , x $ xj11/2 ,
(20)

g(2)
0 5 r(2)

0 (l0/f)(K(2)
11)/2e2l0((u2U0)2

1j 2). (25)
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The parameters a(1,2)
l,r and A(1,2) have the forms f (2)(xj11/2 , t, u, j) 5 (1 2 e2t/t)g(2)

0

1 (t(21 1 e2t/t) 1 te2t/t)a(1,2)
l,r 5 m(1,2)

l,r 1 nl,ru 1 pl,r(u2 1 j 2),

(a(2)
l H[u] 1 a(2)

r (1 2 H[u]))ug(2)
0

(28)A(1,2) 5 A(1,2)
a 1 Abu 1 Ac(u2 1 j 2).

1 t(t/t 2 1 1 e2t/t)A(2)g(2)
0And g(1)

0 and g(2)
0 in Eqs. (23) and (24) can be obtained

1 e2t/t((1 2 uta(2)
l )H[u]g(2)

lself-consistently by taking the limits of (t R 0) in Eq. (13)
and Eq. (14) and applying the compatibility condition at

1 (1 2 uta(2)
r )(1 2 H[u])g(2)

r ).
(x 5 xj11/2 , t 5 0), which gives

In order to evaluate the unknowns A(1,2) in the above two
equations, we can use the compatibility condition at the
cell interface xj11/2 on the whole CFL time step DT,1

r(1)
0

r(2)
0

(r(1)
0 1 r(2)

0 )U0

E (1)
0 1 E (2)

0

2; E (g(1)
0 f(1)

a 1 g(2)
0 f(2)

a ) du dj (26)
EDT

0
E [(g(1) 2 f (1))f(1)

a 1 (g(2) 2 f (2))f(2)
a ] du dj dt 5 0,

from which we can get
5 E [(H[u]g(1)

l 1 (1 2 H[u])g(1)
r )f(1)

a

E [g(1)
0 A(1)f(1)

a 1 g(2)
0 A(2)f(2)

a ] du dj1 (g(2)
l H[u] 1 g(2)

r (1 2 H[u]))f(2)
a ] du dj.

5 Õ [(A(1)
a 1 Abu 1 Ac(u2 1 j 2))g(1)

0 f(1)
aBy using g(1,2)

l,r in Eq. (21) and Eq. (22), the right-hand side
of Eq. (26) can be evaluated explicitly. Therefore, r(1)

0 ,
1 (A(2)

a 1 Abu 1 Ac(u2 1 j 2))g(2)
0 f(2)

a ] du dj
r(2)

0 , l0 , and U0 in Eq. (25) can be obtained from Eq. (26).
As a result, g(1)

0 and g(2)
0 are totally determined. Then,

connecting the macroscopic variables,

W (1)
0 5 (r(1)

0 , r(1)
0 U0 , E (1)

0 ), W (2)
0 5 (r(2)

0 , r(2)
0 U0 , E (2)

0 ),

at the cell interface to the cell-centered values in Eq. (17) ;1
­r(1)

­t

­r(2)

­t

­(r(1)U(1) 1 r(2)U(2))
­t

­(E (1) 1 E (2))
­t

2on both sides, we can obtain the slopes for the macro-
scopic variables,

W (1,2)
0 2 W (1,2)

j (xj)
xj11/2 2 xj

,
W (1,2)

j11 (xj11) 2 W (1,2)
0

xj11 2 xj11/2
,

5
1
G0

E [G1g(1)
0 1 G2u(a(1)

l H[u] 1 a(1)
r (1 2 H[u]))g(1)

0

(29)

from which a(1)
l and a(2)

l on the left side and a(1)
r and a(2)

r

on the right side in Eq. (23) and Eq. (24) can be obtained
1 G3(H[u]g(1)

l 1 (1 2 H[u])g(1)
r )by using the same techniques for solving Eq. (12) with

r 5 x. At this point, there are still two unknowns, A(1,2),
1 G4u(a(1)

l H[u]g(1)
l 1 a(1)

r (1 2 H[u])g(1)
r )]f(1)

a du djfor the time variation parts of the gas distribution functions
in Eq. (23) and Eq. (24). 1 [G1g(2)

0 1 G2u(a(2)
l H[u] 1 a(2)

r (1 2 H[u]))g(2)
0

(4) Substituting Eq. (23), Eq. (24), Eq. (19), and Eq.
1 G3(H[u]g(2)

l 1 (1 2 H[u])g(2)
r )(20) into the integral solutions Eq. (13) and Eq. (14), we get

1 G4u(a(2)
l H[u]g(2)

l 1 a(2)
r (1 2 H[u])g(2)

r )]f(2)
a du dj,

f (1)(xj11/2 , t, u, j) 5 (1 2 e2t/t)g(1)
0

where1 (t(21 1 e2t/t) 1 te2t/t)

(a(1)
l H[u] 1 a(1)

r (1 2 H[u]))ug(1)
0

(27) G0 5 DT 2 t(1 2 e2DT/t),
1 t(t/t 2 1 1 e2t/t)A(1)g(1)

0 G1 5 2(1 2 e2DT/t),
1 e2t/t((1 2 uta(1)

l )H[u]g(1)
l G2 5 (2T 1 2t(1 2 e2DT/t) 2 DTe2Dt/t),

1 (1 2 uta(1)
r )(1 2 H[u])g(1)

r )
G3 5 (1 2 e2DT/t),

G4 5 (DTe2DT/t 2 t(1 2 e2DT/t)).and
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Since all terms on the right-hand side of Eq. (29) are known
and the integral can be evaluated explicitly, the coefficients
(A(1,2)

a , Ab , Ac) can be determined from Eq. (29) by using
the techniques for solving Eq. (12) with r 5 t.

(5) Finally the time-dependent numerical fluxes for
component 1 and component 2 gases across a cell interface
can be obtained by taking the moments of the individual
distribution function f (1) and f (2) in Eq. (27) and Eq. (28)
separately, which are

1
Fr(1)

0

Fr(1)U(1)

FE (1)

2
j11/2

5 E uf(1)
a f (1)(xj11/2 , t, u, j) du dj

and

1
0

Fr(2)

Fr(2)U(2)

FE (2)

2
j11/2

5 E uf(2)
a f (2)(xj11/2 , t, u, j) du dj.

FIG. 2. Total density distribution (r(1) 1 r(2)).

(22), where the pressure P is related to (r, l) throughThen, integrating the above equations in a whole time step
P 5 r/2l. The first term in the collision time correspondsDT, we can get the total mass, momentum, and energy
to the physical viscosity and the second one accounts fortransports for each component, from which the flow vari-
the artificial viscosity. The artificial one guarantees thatables in each cell get updated. For the next time step, we
the real gas distribution function will stay on the non-go back to step (1) and repeat all the above steps.
Maxwellian state in the nonequilibrium flow region.

3. NUMERICAL EXAMPLES Case 1. The first test case is taken from [11, 13], and
the initial condition is

Three shock tube test cases are presented in this section
to validate the current approach for the multicomponent

WL 5 (rL , rLUL , EL , cL) 5 (1.0, 0.0, 2.5, 1.4)flow calculations. In all calculations, the length of the
numerical domain is equal to 100 and each cell size is WR 5 (rR , rRUR , ER , cR) 5 (0.125, 0.0, 0.5, 1.2).
Dx 5 1. Different from any other approaches [11, 1], in
our scheme the van Leer’s limiter is used for the recon- In this calculation, the initial discontinuity is located at
struction of conservative variables for each component in x 5 50. The simulation results are shown in Figs. 2–4 for
each cell directly without using any specific numerical re- total density (r(1) 1 r(2)), pressure, and velocity. In all
quirements of smooth material interface. The time step is these figures, the solid lines are the curves obtained from
determined by the common CFL condition, where the CFL 400 grid points with the same BGK scheme. The pressure
number is equal to 0.65. The collision time t is a local and velocity are very smooth across the material interface,
constant, which is set to although all conservative variables are used in the initial

reconstruction. The pressure distribution in Fig. 3 is ob-
tained as a passive variable from the conservative variablest 5 0.1 DT

Ïl0

r0
1 DT

uPl 2 Pru
Pl 1 Pr

,
at the output time. Figure 5 presents the average c in each
cell which is defined as c 5 (K 1 3)/(K 1 1) and the
average K is K 5 (r(1)K(1) 1 r(2)K(2))/(r(1) 1 r(2)). Figurewhere (l0 , r0) are the temperature and density of g(1,2)

0 in
Eq. (25) and (Pl , Pr) are the corresponding pressure terms 6 and Fig. 7 are the individual mass densities r(1) and r(2)

for each component. Since we follow the time evolutionin the left g(1,2)
l and right states g(1,2)

r in Eq. (21) and Eq.
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FIG. 3. Pressure distribution. FIG. 5. c distribution.

FIG. 6. Density r(1) distribution.FIG. 4. Velocity distribution.
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for our BGK solver. Figures 8–13 show the total mass
density (r(1) 1 r(2)), pressure, velocity, c, r(1), and r(2)

separately, where the solid lines are obtained from the
same scheme with 400 grid points. The velocity and pres-
sure are very smooth at the material interface, but a small
wiggle appears at the end of the rarefaction wave. It seems
that this wiggle is not caused by the current techniques
designed specifically for the two-component flow solver.
Even for the single component BGK solver, if the initial
data has extremely large density and pressure jump, a simi-
lar wiggle usually appears. This mechanism of the appear-
ance of wiggle is inherent to the finite volume method.

For the test case of shock–bubble interaction presented
in [1], the current scheme has some difficulties. Because
the gas-kinetic scheme is a scheme designed to describe the
advection–diffusion equation, it can never keep a contact
discontinuity sharp and stationary. The physical diffusion
and heat conduction due to particle transport in gases will
naturally smear the contact discontinuity. So, before the
shock interacts with the bubble, the bubble surface has
already been smeared in a few cells and the thickness
depends on the collision time. It seems that for the shock–
interface interaction cases, the carefully designed schemes
based on the approximate Riemann solver should be use-FIG. 7. Density r(2) distribution.
ful, at least in the 1D case, since these schemes could
perfectly keep the contact material interface sharp before
the contact becomes involved in the interactions with

of each component explicitly, the total mass for each com-
ponent is precisely conserved. If there were no momentum
and energy exchange between two components through
particle collisions, the physical problem would become the
one in which each component expands into the vacuum,
and the final results will be totally different from these
results shown above. Also, as shown in Fig. 6 and Fig. 7,
both r(1) and r(2) around the material interface reduce from
certain values to zero. If we define w 5 r(1) 2 r(2), according
to the sign of w, we can know in each cell which component
the gas is mostly composed of. If we define w 5 0 as the
material interface, the function w will be a variable similar
to the level set function [14]. However, w is updated in our
scheme according to the different physical model and the
distribution of w can be used as a measure of particle diffu-
sions.

Case 2. The second test case is taken from Abgrall’s
recent paper [1] with the initial data

WL 5 (rL , rLUL , EL , cL) 5 (14.54903, 0.0, 2.9 3 107, 1.67),

WR 5 (rR , rRUR , ER , cR) 5 (1.16355, 0.0, 2.5 3 105, 1.40).

This example is interesting and very difficult for multicom-
FIG. 8. Total density distribution (r(1) 1 r(2)).ponent flow solvers. One hundred mesh points are used
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FIG. 11. c distribution.FIG. 9. Pressure distribution.

FIG. 12. Density r(1) distribution.FIG. 10. Velocity distribution.
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FIG. 15. Pressure distribution.FIG. 13. Density r(2) distribution.

shocks. However, for the general cases where the initial
bubble surface is located in the middle of a numerical cell,
the ability of any shock-capturing schemes to keep the
stationary material interface sharp and free of wiggles is
doubtful. For these applications where the advection–
diffusion phenomena are important (not purely artificial
diffusion), such as pollutant propagation and turbulent
mixing layer, the gas-kinetic scheme will be very helpful
and the BGK models could naturally describe this kind of
physical phenomena [21]. Another good application for the
current scheme is that it can be applied to the gas–vacuum
expansion problem, such as to study the interstellar me-
dium and confined plasma. It is well known, the Riemann
solver has great difficulty in handling the gas–vacuum
expansion case, where the density and temperature easily
become negative, especially for the approximate Riemann
solver [5].

Case 3. As a third case, we test the gas–vacuum expan-
sion phenomena with the initial data,

WL 5 (rL , rLUL , EL , cL) 5 (1.0, 0.0, 2.5, 1.4)

WR 5 (rR , rRUR , ER , cR) 5 (0.0, 0.0, 0.0, 0.0),

where all flow variables on the right-hand side are totally
zero. One hundred grid points are used here. The simula-

FIG. 14. Density distribution r(1). tion results are shown in Figs. 14–15 for the density and
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6. A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Latticepressure distributions for the one-component gas. The
Boltzmann model of immiscible fluids, Phys. Rev. A 43(8), 4320solid lines are obtained from the same scheme with 400
(1991).

grid points. Comparing Fig. 14 and Fig. 6, we can observe
7. S. Harris, An Introduction to the Theory of the Boltzmann Equationclearly the effects of particle collisions between different (Holt, Rinehart, & Winston, New York, 1971).

components and the effects of dynamical coupling in the 8. A. Harten, On a class of high resolution total variation stable finite
two-component gas evolution. difference schemes, SIAM J. Numer. Anal. 21, 1 (1984).

9. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly
4. CONCLUSION high order accurate essentially non-oscillatory schemes, III, J. Com-

put. Phys. 71, 231 (1987).
In this paper, we have developed a new scheme based 10. A. Jameson, Positive schemes and shock modeling for compressible

on the gas-kinetic equation for multicomponent flow calcu- flows, Int. J. Num. Methods Fluids 20, 743 (1995).
lations. The scheme is based on the BGK model for each 11. S. Karni, Multicomponent flow calculations by a consistent primitive

algorithm, J. Comput. Phys. 112, 31 (1994).component, from which the advection–diffusion equation
12. Smadar Karni, Hybrid multifluid algorithms, SIAM J. Sci. Comput.,can be derived [3]. Since we have followed the time-evolu-

to appear.tion of the distribution function for each component explic-
13. B. Larrouturou, How to preserve the mass fraction positive whenitly, the total mass for each component is precisely con-

computing compressible multi-component flow, J. Comput. Phys. 95,served. The current scheme can be also extended to the
59 (1991).

three-dimensional case without major modifications. Cap-
14. S. Osher and J. A. Sethian, Front propagating with curvature-depen-

turing the particle diffusion process in multicomponent gas dent speed: Algorithms based on Hamilton–Jacobi formulations, J.
flows by numerical methods is a tough problem; neverthe- Comput. Phys. 79, 12 (1988).
less the current approach is a starting point in this direction. 15. B. Perthame, Second-order Boltzmann schemes for compressible Eu-
We believe that the gas-kinetic scheme will be quite prom- ler equation in one and two space dimensions, SIAM J. Numer. Anal.

29(1) (1992).ising to describe the transport phenomena.
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